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Abstract

We consider the problem of designing network cost-sharing protocols with good equilibria
under uncertainty. The underlying game is a multicast game in a rooted undirected graph with
nonnegative edge costs. A set of k terminal vertices or players need to establish connectivity
with the root. The social optimum is the Minimum Steiner Tree.

We are interested in situations where the designer has incomplete information about the
input. We propose two different models, the adversarial and the stochastic. In both models, the
designer has prior knowledge of the underlying metric but the requested subset of the players
is not known and is activated either in an adversarial manner (adversarial model) or is drawn
from a known probability distribution (stochastic model).

In the adversarial model, the goal of the designer is to choose a single, universal cost-sharing
protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The
main question we address is: to what extent can prior knowledge of the underlying metric help
in the design?

We first demonstrate that there exist classes of graphs where knowledge of the underlying
metric can dramatically improve the performance of good network cost-sharing design. For
outerplanar graph metrics, we provide a universal cost-sharing protocol with constant PoA,
in contrast to protocols that, by ignoring the graph metric, cannot achieve PoA better than
Ω(log k). Then, in our main technical result, we show that there exist graph metrics, for which
knowing the underlying metric does not help and any universal protocol has PoA of Ω(log k),
which is tight. We attack this problem by developing new techniques that employ powerful
tools from extremal combinatorics, and more specifically Ramsey Theory in high dimensional
hypercubes.

Then we switch to the stochastic model, where each player is independently activated ac-
cording to some probability distribution that is known to the designer. We show that there
exists a randomized ordered protocol that achieves constant PoA. By using standard derandom-
ization techniques, we produce a deterministic ordered protocol that achieves constant PoA. We
remark, that the first result holds also for the black-box model, where the probabilities are not
known to the designer, but is allowed to draw independent (polynomially many) samples.
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1 Introduction

Network Cost-Sharing Games. We study a multicast game in a rooted undirected graph
G = (V,E) with a nonnegative cost ce on each edge e ∈ E. A set of k terminal vertices or players
s1, . . . , sk need to establish connectivity with the root t. Each player selects a path Pi and the
outcome produced is the graph H = ∪iPi. The global objective is to minimize the cost

∑
e∈H ce of

this graph, which is the Minimum Steiner Tree.
The cost of an edge may represent infrastructure cost for establishing connectivity or renting

expense, and needs to be covered by the players that use that edge in the solution. There are
several ways to split the edge costs among the users and this is dictated by a cost-sharing protocol.
Naturally, it is in the players best interest to choose paths that charge them with small cost, and
therefore the solution will be a Nash equilibrium (NE). Algorithmic Game Theory provides tools
to analyze the quality of the equilibrium solutions; this can be measured with the Price of Anarchy
(PoA) [43] (or Price of Stability (PoS) [5]) that compares the worst-case (or the best-case) cost
in a Nash equilibrium with the cost of the minimum Steiner tree. This is a fundamental network
design game that was originated by Anshelevich et al. [5] and has been extensively studied since.
[5] studied the Shapley cost-sharing protocol, where the cost of each edge is equally split among its
users. They showed that the quality of equilibria can be really poor1.

Cost-Sharing Protocol Design. Different cost-sharing protocols result in different quality of
equilibria. In this work, we are interested in the design of protocols that induce good equilib-
rium solutions in the worst-case, therefore we focus on protocols that guarantee low PoA. Chen,
Roughgarden and Valiant [22] were the first to address design questions for network cost-sharing
games. They gave a characterization of protocols that satisfy some natural axioms and they thor-
oughly studied their PoA for the following two classes of protocols, that use different informational
assumptions from the perspective of the designer.

Non-uniform protocols. The designer has full knowledge of the instance, that is, she knows both
the network topology given by G and the costs ce, and in addition the set of players’ requests
s1, . . . , sk. They showed that a simple priority protocol has a constant PoA; the Nash equi-
libria induced by the protocol simulate Prim’s algorithm for the Minimum Spanning Tree
(MST) problem, and therefore achieve constant approximation.

Uniform protocols. The designer needs to decide how to split the edge cost among the users without
knowledge of the underlying graph. They showed that the PoA is Θ(log k); both upper and
lower bound comes from the analysis of the Greedy Algorithm for the Online Steiner Tree
problem (OSTP).

Cost-Sharing Design under Uncertainty. Arguably, there are situations where the former
assumption is too optimistic while the latter is too pessimistic. We propose a model that lies in
the middle-ground, as a framework to design network cost-sharing protocols with good equilibria,
when the designer has incomplete information.

We assume that the designer has prior knowledge of the underlying metric, (given by the graph
G and the shortest path metric induced by the costs ce), but is uncertain about the requested subset
of players. We consider two different models, the adversarial model and the stochastic model. In the
former, the designer knows nothing about the number or the positions of the si’s and has as goal to

1Even for simple networks the PoA grows linearly with the number of players, k. The PoS is not well-understood.
It is a big open question to determine its exact value that is between constant and O(log / log log k) [45].
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Figure 1: In (a) and (b) we assume two orders on the vertices, denoted by qi or pi. The q-order is adversarially
chosen and simulates the adversary for the OSTP [38], that results to high PoA of Ω(log k). The p-order results to
constant PoA. (c) shows an example where both the best ordered protocol and the Shapley protocol have PoA ≥ 5/4,
whereas there is an intermediate protocol with PoA 1. In edges with no written cost, we consider the unit cost; we
take ε > 0 arbitrarily small.

process the graph and choose a single, universal cost-sharing protocol that has low PoA against all
possible requested subsets. Here, no distributional assumptions are made about arrivals of players,
and take the worst-case approach similarly to Competitive Analysis. Once the designer selects the
protocol, then an adversary will choose the requested subset of players and their positions in the
graph (the si’s), in a way that maximizes the PoA of the induced game. In the stochastic model,
the players/vertices are activated according to some probability distribution which is given to the
designer. The goal is now to choose a universal protocol where the expected worst-case cost in the
Nash equilibrium is not far from the expected optimal cost.

Example 1. (Ordered protocols). An important special class with interesting properties is that
of ordered protocols. The designer decides a total order of the users, and when a subset of players
uses some edge, the full cost is covered by the player who comes first in the order. Any NE of
the induced game corresponds to the solution produced by the Greedy Algorithm for the MST:
each player is connected, via a shortest path, with the component of the players that come before
him in the order. The analysis of the PoA in the uniform model boils down to the analysis of the
Greedy Algorithm for the OSTP, where the worst-case order is considered. The following example
demonstrates that even this special class of ordered protocols becomes very rich, once the designer
has prior knowledge of the underlying metric space. Uniform protocols throw away this crucial
component, the structure of the underlying metric, that universal protocols can use in their favor
to come up with better PoA guarantees.

Uniform protocols. The designer chooses an order of the players 1, . . . , k without prior knowledge
of the graph. The adversary constructs a worst-case graph, by simulating the adversary for
the Greedy Algorithm of the OSTP [38], and places the players accordingly (see for example
Figure 1(a),(b), the q labels). Therefore the PoA of uniform ordered protocol is Ω(log k) [22].

Universal protocols. The designer takes into account the graph; consider the worst-case graph
for the Greedy Algorithm of the OSTP (illustrated in Figure 1(a),(b) for a small number
of players). For the graph of Figure 1(a), choose the linear order dictated from the path
p1, . . . , p9 (say from left to right). For the graph of Figure 1(b) order the vertices according to
their distance from t, p1, . . . , p11. The adversary will choose k and the positions of the players
(s1, . . . , sk). In both cases, it is not hard to see that, no matter which subset of players the
adversary chooses, the PoA remains constant as k grows.
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Example 2. (Generalized weighted Shapley). In [22], it was shown that ordered protocols
are essentially optimal among uniform protocols. In our model, the choice of the optimal method
may depend on the underlying graph metric. Take the example in Figure 1(c). By using Shapley
cost sharing the adversary can choose v1, v2, v3 and in the Nash equilibrium v1, v3 connect directly
to t and v2 connects through v1. Regarding any ordered protocol, the square defined by the vi’s
contains a path of length 2 where the middle vertex comes last in the order. The adversary will
select this triplet of players, say v1, v2, v3. In the Nash equilibrium, v1 connects directly to t, v3 and
v2 connect through v1. In both cases, the cost of the Nash equilibria is 5 and the minimum Steiner
tree that connects those vertices with t has cost 4 (by ignoring ε) and therefore, PoA ≥ 5/4.

However the following (generalized Shapley) protocol, has PoA = 1. Partition the players into
two sets S1 = {v1, v2}, S2 = {v3, v4}. If players from both partitions appear on some edge, then the
cost is charged only to players from S1. Players that belong to the same partition share the cost
equally. One can verify that for all possible subsets of players this protocol produces only optimal
equilibria.

Results. We propose a framework for the design of (universal) network cost-sharing protocols
with good equilibria, in situations where the designer has incomplete information about the input.
We consider two different models, the adversarial and the stochastic. In both models, the designer
has prior knowledge of the underlying metric but the requested subset of the players is not known
and is activated either in an adversarial manner (adversarial model) or is drawn from a known
probability distribution (stochastic model). The central question we address is: to what extent does
prior knowledge of the metric help in good network design under uncertainty?

For the adversarial model, we first demonstrate that there exist classes of graph metrics where
prior knowledge of the underlying metric can dramatically improve the performance of good network
cost-sharing design. For outerplanar graph metrics, we provide a universal ordered cost-sharing
protocol with constant PoA, against any choice of the adversary. This is in contrast to uniform
protocols that ignore the graph and cannot achieve PoA better than Ω(log k) in outerplanar metrics.

Our main technical result shows that there exist graph metrics, for which knowing the underlying
metric does not help the designer, and any universal protocol has PoA of Ω(log k). This matches
the upper bound of O(log k) that can be achieved without prior knowledge of the metric [38, 22].

Then we switch to the stochastic model, where each player is independently activated according
to some probability that is known to the designer. We show that there exists a randomized ordered
protocol that achieves constant PoA. By using standard derandomization techniques [52, 48], we
produce a deterministic ordered protocol that achieves constant PoA. We remark, that the first
result holds also for the black-box model, where the probabilities are not known to the designer,
but is allowed to draw independent (polynomially many) samples.

Our results for the adversarial model motivate the following question that is left open.
Open Question: For which metric spaces can one design universal protocols with constant PoA?
What sort of structural graph properties are needed to obtain good guarantees?

Techniques. We prove our main lower bound for the adversarial model in two parts. In the first
part (Section 3) we bound the PoA achieved by any ordered protocol. Our origin is a well-known
“zig-zag” ordered structure that has been used to show a lower bound on the Greedy Algorithm
of the OSTP (see the labeled path (q1, q6, q4, . . . , q2) in Figure 1(a)). The challenge is to show
that high dimensional hypercubes exhibit such a distance preserving structure no matter how the
vertices are ordered. Section 3 is devoted to this and we believe that this is of independent interest.

3



We show the existence proof by employing powerful tools from Extremal Combinatorics and in
particular Ramsey Theory [35]. We are inspired by a Ramsey-type result due to Alon et al. [4],
in which they show that for any given length ` ≥ 5, any r-edge coloring of a high dimensional
hypercube contains a monochromatic cycle of length 2`. Unfortunately, we cannot immediately
use their results, but we show a similar Ramsey-type result for a different, carefully constructed
structure; we assert that every 2-edge coloring of high dimensional hypercubes Qn contains a
monochromatic copy of that structure. Then, we prescribe a special 2-edge-coloring that depends
on the ordering of Qn, so that the special subgraph preserves some nice labeling properties. A
suitable subset of the subgraph’s vertices can be 1-embedded into a hypercube of lower dimension.
Recursively, we show existence of the desired distance preserving structure.

In the second part (Section 4), we extend the lower bound to all universal cost-sharing protocols,
by using the characterization of [22]. At a high level, we use as basis the construction for the
ordered protocol and create “multiple copies”2. The adversary will choose different subsets of
players, depending on whether the designer chose protocols “closer” to Shapley or to ordered. In
the latter case, we use arguments from Matching Theory to guarantee existence of ordered-like
players in one of the hypercubes.

For the stochastic model (Section 6), we construct an approximate minimum Steiner tree over
a subset of vertices which are drawn from the known probability distribution. This tree is used as
a base to construct a spanning tree, which determines a total order over the vertices. We finally
produce a deterministic order by applying standard derandomization techniques [52, 48].

Related Work Following the work of [5, 6], a long line of research studies network cost-sharing
games, mainly focusing on the PoS of the Shapley cost-sharing mechanism. [5] showed a tight
Θ(log k) bound for directed networks, while for undirected networks several variants have been
studied [14, 16, 21, 23, 28, 29, 45, 15] but the exact value of PoS still remains a big open problem.
For multicast games, an improved upper bound of O(log k/ log log k) is known due to Li [45], while
for broadcast games, a series of work [29, 44] lead finally to a constant due to Bilò et al. [16]. The
PoA of some special equilibria has been also studied in [19, 20].

Chen, Roughgarden and Valiant [22] initiated the study of network cost-sharing design with
respect to PoA and PoS. They characterized a class of protocols that satisfy certain desired prop-
erties (which was later extended by Gopalakrishnan, Marden and Wierman, in [33]), and they
thoroughly studied PoA and PoS for several cases. Falkenhausen and Harks [51] studied singleton
and matroid games with weighted players while Gkatzelis, Kollias and Roughgarden [31], focus on
weighted congestion games with polynomial cost functions.

Close in spirit to universal cost-sharing protocols is the notion of Coordination Mechanisms [24]
that provides a way to improve the PoA in cases of incomplete information. The designer has to
decide in advance local scheduling policies or increases in edge latencies, without knowing the exact
input, and has been used for scheduling problems [24, 39, 42, 8, 18, 26, 12, 1, 2] as well as for simple
routing games [25, 13].

As discussed in Example 1, the analysis of the equilibria induced by ordered protocols corre-
sponds to the analysis of Greedy Algorithm for the MST. In the uniform model, this corresponds
to the analysis of the Greedy Algorithm [38, 7] for the (Generalized) OSTP [3, 9, 50], which
was shown to be Θ(log k)-competitive by Imase and Waxman [38] (O(log2 k)-competitive for the
Generalized OSTP by [7]). The universal model is closely related to universal network design prob-
lems [40], hence our choice for the term “universal”. In the universal TSP, given a metric space,

2Note that the standard complexity measure, to analyze the inefficiency of equilibria, is the number of participants,
k, and not the total number of vertices in the graph (see for example [5, 22]).
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the algorithm designer has to decide a master order so that tours that use this order have good
approximation [46, 10, 37, 34, 40].

Much work has been done in stochastic models and we only mention the most related to our
work. Karger and Minkoff [41] showed a constant approximation guarantee for the maybecast
problem, where the designer needs to fix (before activation) some path for every vertex to the root.
Garg et al. [30] gave bounds on the approximation of the stochastic online Steiner tree problem.
A line of works [11, 34, 47, 48] has studied the a priori TSP. Shmoys and Talwar [48] assumed
independent activations and demonstrated randomized and deterministic algorithms with constant
approximations.

2 Model and definitions

Universal Cost-Sharing Protocols. A multicast network cost-sharing game, is specified by
a connected undirected graph G = (V,E), with a designated root t and nonnegative weight ce
for every edge e, a set of players S = {1, . . . , k} and a cost-sharing protocol. Each player i is
associated with a terminal3 si, which she needs to connect with t. We say that a vertex is activated
if there exists some requested player associated with it. In the adversarial model the designer
knows nothing about the set S of activated vertices, while in the stochastic model, the vertices are
activated according to some probability distribution Π which is known to the designer.

For any set N of players, a cost-sharing method ξ : 2N → R|N |+ decides, for every subset R ⊆ N ,
the cost-share ξ(i, R) for each player i ∈ R. A natural rule is that the shares for players not included
in R should always be 0, i.e. if i /∈ R, ξ(i, R) = 0. W.l.o.g. each player is associated with a distinct
vertex4. For any graph G and any set of players N , a cost-sharing protocol Ξ assigns, for every
e ∈ E, some cost-sharing method ξe on N .

Following previous work [22, 51], we focus on cost-sharing protocols that satisfy the following
natural properties:

(1) Budget-balance: For every network game induced by the cost sharing protocol Ξ, and every
outcome of it,

∑
i∈R ξe(i, R) = ce, for every edge e with cost ce.

(2) Separability: For every network game induced by the cost sharing protocol Ξ, the cost shares
of each edge are completely determined by the set of players using it.

(3) Stability: In every network game induced by the cost-sharing protocol Ξ, there exists at least
one pure Nash equilibrium, regardless of the graph structure.

We call a cost-sharing protocol Ξ universal, if it satisfies the above properties for any graph

G, and it assigns the cost-sharing method ξe : 2V → R|V |+ to edge e based only on knowledge of
G (without knowledge of S5) for the adversarial model, while in the stochastic the method can in
addition depend on Π. Due to the characterization in [22], we restrict ourselves to the family of
generalized weighted Shapley protocols6.

3We abuse notation and use S to refer both to the players and their associated vertices.
4To see this, if there are two players with s1 = s2 = v, for some v ∈ V , we modify the graph by connecting a new

vertex v′ with v via a zero-cost edge and then we set s1 = v and s2 = v′. Neither the optimum solution, nor any
Nash equilibrium are affected by this modification.

5The methods should be defined on V , since every vertex is potentially associated with some player.
6[22] characterizes the linear protocols (for every edge e of cost ce ≥ 0, it assigns the method ce · ξ, where ξ is the

method it assigns to any edge of unit cost) to be the generalized weighted Shapley protocols. They further showed
that for any non-linear protocol, there exists a linear one with at most the same PoA.
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Generalized Weighted Shapley Protocol (GWSP). The generalized weighted Shapley pro-
tocol (GWSP) is defined by the players’ weights (parameters) {w1, . . . , wn} and an ordered partition
of the players Σ = (U1, . . . , Uh). An interpretation of Σ is that for i < j, players from Ui “arrives”
before players from Uj . More formally, for every edge e of cost ce, every set of players Re that uses
e and for s = arg minj{Uj |Uj ∩Re 6= ∅}, the GWSP assigns the following method to e:

ξe(i, Re) =

{
wi∑

j∈Us∩Re wj
ce, if i ∈ Us ∩Re

0, otherwise

In the special case that each Ui contains exactly one player, the protocol is called ordered. The
order of the Ui sets indicates a permutation of the players, denoted by π.

(Pure) Nash Equilibrium (NE). We denote by Pi the strategy space of player i, i.e. the set
of all the paths connecting si to t. P = (P1, . . . , Pk) denotes an outcome or a strategy profile, where
Pi ∈ Pi for all i ∈ S. As usual, P−i denotes the strategies of all players but i. Let Re be the
set of players using edge e ∈ E under P. The cost share of player i induced by ξe’s is equal to
ci(P) =

∑
e∈Pi ξe(i, Re). The players’ objective is to minimize their cost share ci(P). A strategy

profile P = (P1, . . . , Pk) is a Nash equilibrium (NE) if for every player i ∈ S and every strategy
P ′i ∈ Pi, ci(P) ≤ ci(P−i, P ′i ).

Price of Anarchy (PoA). The cost of an outcome P = (P1, . . . , Pk) is defined as c(P) =∑
e∈∪iPi ce, while O = (O1, . . . , Ok) ∈ arg minP c(P) is the optimum solution. The Price of Anarchy

(PoA) is defined as the worst-case ratio of the cost in a NE over the optimal cost in the game induced
by S. In the adversarial model the worst-case S is chosen, while in the stochastic model S is drawn
from a known distribution Π. Formally, in the adversarial model we define the PoA of a protocol
Ξ on G as

PoA(G,Ξ) = max
S⊆V \{t}

maxP∈ N c(P)

c(O)
,

where N is the set of all NE of the game induced by Ξ and S on G.
In the stochastic model, the PoA of Ξ, given G and Π is

PoA(G,Ξ,Π) =
ES∼Π [maxP∈ N c(P)]

ES∼Π[c(O)]
.

In both models the objective of the designer is to come up with protocols that minimize the
above ratios. Finally, the Price of Anarchy for a class of graph metrics G, is defined as

PoA(G) = max
G∈G

min
Ξ(G)

PoA(G,Ξ); PoA(G) = max
G∈G

min
Ξ(G,Π)

max
Π

PoA(G,Ξ,Π).

Graph Theory. For every graph G, we denote by V (G) and E(G) the set of vertices and edges
of G, respectively. For any v, u ∈ V (G), (v, u) denotes an edge between v and u and dG(v, u)
denotes the shortest distance between v and u in G; if G is clear from the context, we simply write
d(v, u). A graph G is an induced subgraph of H, if G is a subgraph of H and for every v, u ∈ V (G),
(v, u) ∈ E(G) if and only if (v, u) ∈ E(H). G is a distance preserving (isometric) subgraph of H,
if G is a subgraph of H and for every v, u ∈ V (G), dG(v, u) = dH(v, u).
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3 Lower Bound of Ordered Protocols

The main result of this section is that the PoA of any ordered protocol is Ω(log k) which is tight. We
formally define (Definition 4) the ‘zig-zag’ pattern of the lower bounds of the Greedy Algorithm of
the OSTP (see Example 1(a) and Figure 2). Then the main technical challenge is to show that for
any ordering of the vertices of high dimensional hypercubes, there always exists a distance preserving
path, such that the order of its vertices follows that zig-zag pattern. Finally, by connecting any two
vertices of the hypercube with a direct edge of suitable cost, similar to the example in Figure1(a),
we get the final lower bound construction.

Definition 3 (Classes). For r > 0, and for a path graph P = (v0, . . . , v2r) of 2r+1 vertices, we define
a partition of the vertices into r+1 classes, D0, D1, . . . , Dr, as follows: Class 0 contains the endpoints
of P , D0 = {v0, v2r}. For every j ∈ [r], Dj = {vi|

(
i mod 2r−j

)
= 0 and

(
i mod 2r−j+1

)
6= 0}.

For v ∈ Dj , w ∈ Dj′ and j < j′, we say that v belongs to a lower class than w (and w belongs to a
higher class than v).

As an example, consider the path P = (v0, v1, v2, v3, v4, v5, v6, v7, v8), where r = 3. Then,
D0 = {v0, v8}, D1 = {v4}, D2 = {v2, v6} and D3 = {v1, v3, v5, v7}. Note that always |D0| = 2 and
for j 6= 0, |Dj | = 2j−1.

For j > 0 and vi ∈ Dj , we define the parents of vi as Π(vi) = {w|dP (vi, w) = 2r−j}, i.e. the
closest vertices that belong to lower classes. Remark that for all v /∈ {v0, v2r} i) the cardinality of
Π(v) is 2, ii) the vertices of Π(v) belong to lower classes than v, iii) all vertices between v and any
vertex of Π(v) belong to higher classes than v. We are now ready to define the “zig-zag” pattern.

Definition 4 (Zig-zag pattern). We call a path graph P = (v0, v1, . . . , v2r), with distinct integer
labels π, zig-zag, and we denote it by Pr(π), if for every i /∈ {0, 2r}, π(w) < π(vi) for all w ∈ Π(vi).

An example of such a path for r = 3 is shown in Figure 2. Our main result of this section
is that there exist graphs, high dimensional hypercubes, such that for any order π, Pr(π) always
appears as a distance preserving subgraph. Our proof is existential and uses Ramsey theory.

1 8 6 7 3 5 4 9 2

Figure 2: An example of a P3(π) path. The numbers correspond to the labels.

Proof Overview: The proof is by induction and in the inductive step our starting point is the
n-th dimensional hypercube Qn. Given an ordering/labeling π of the vertices of Qn we first show
that Qn contains a subgraph W which is isomorphic to a ‘pseudo-hypercube’ Q2

m (m < n) where
the labeling of its vertices satisfies a special property (to be described shortly). Q2

m is defined by
replacing each edge of Qm by a 2-edge path (of length two)7.

Labeling property: For the subgraph W we require that all such newly formed 2-edge paths,
are P1(π) paths, i.e. the label of the middle vertex is greater than the labels of the endpoints
(Figure 3(a) shows such a labeling).

Next, we contract all such 2-edge paths of Q2
m into single edges, resulting in a graph isomorphic

to Qm; this is the hypercube used for the next step. Note that each contracted edge still corresponds
to a path in Qn. Therefore, after r recursive steps, each edge corresponds to a 2r path of Qn.
Further, note that such a path is a Pr(π) path, due to the labeling property that we preserve at

7See Q2
m of Definition 7 and Figure 3a for an illustration
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each step. We require that, at the end of the last inductive step, Qm = Q1 (a single edge), and
(by unfolding it) we show that this edge corresponds to a distance preserving subgraph of the
original graph/hupercube. At each step, m < n; the relation between n and m is determined by a
Ramsey-type argument. We next describe the basic ingredients that we use to show existence of
W . We apply a coloring scheme to the edges of Qn that depends on the order of the vertices.

Coloring Scheme: Consider Qn as a bipartite Qn = (A,B,E). For any edge (v, u), with v ∈ A
and u ∈ B, if the v’s label is smaller than u’s, we paint the edge blue, otherwise we paint it red.

By a Ramsey-type argument we show that Qn has a monochromatic subgraph isomorphic to a
specially defined graph Gm; Gm is carefully specified in such a way that it contains at least two
subgraphs isomorphic to pseudo-hypercubes Q2

m. The special property of those two subgraphs is
described next.

Let H1 and H2 be the two half cubes8 of Qn and let V (H1) = A and V (H2) = B. Observe that
if Q2

m is a subgraph of Qn then the corresponding Qm is an induced subgraph of either H1 or H2.
We carefully construct Gm such that it contains subgraphs W1 and W2 isomorphic to Q2

m, whose
corresponding Qm’s are induced subgraphs of H1 and H2, respectively. The color of Gm determines
which of the W1 and W2 will serve as the desired W . In particular, if the color is blue, then for
every edge (v, u), with v ∈ V (H1) and u ∈ V (H2), it should hold that v’s label is smaller than u’s
and therefore the labeling property is satisfied for W1; similarly, if the color is red, W2 serves as W .

Proof Roadmap. The whole proof of the lower bound proceeds in several steps in the following
sections. In Section 3.1 we give the formal definition of the subgraph Gm of a hypercube Qn.
Section 3.2 is devoted to show that every 2-edge coloring of a (suitably) high dimensional hypercube
contains a monochromatic copy of Gm (Lemma 6), by using Ramsey theory. Then, in Section 3.3
we show that, for any ordering of the vertices of Qn, we can define a special 2-edge-coloring , so
that there exists a Q2

m subgraph of Gm that preserves the Labeling property (Lemma 8). At last,
in Section 3.4, by a recursive application of the combination of the Ramsey-type result and the
coloring, we prove the existence of the zig-zag path in high dimensional hypercubes (Theorem 9).
We then show how to construct a graph that serves as lower bound for all ordered protocols
(Theorem 11). This is done by connecting any two edges of the hypercube with a direct edge of
appropriate cost, similar to the example in Figure 1(a).

Definitions and notation on Hypercubes. We denote by [r, s] (for r ≤ s) the set of integers
{r, r+1, . . . , s−1, s}, but when r = 1, we simply write [s]. We follow definitions and notation of [4].
Let Qn be the graph of the n-dimensional hypercube whose vertex set is {0, 1}n. We represent a
vertex v of V (Qn) by an n-bit string x = 〈x1 . . . xn〉, where xi ∈ {0, 1}. By 〈xy〉 or xy we denote the
concatenation of an r-bit string x with an s-bit string y, i.e. xy = 〈x1 . . . xry1 . . . xs〉. x = 〈xj〉rj=1

is the concatenation of its r bits. An edge is defined between any two vertices that differ only in a
single bit. We call this bit, flip-bit, and we denote it by ‘∗’. For example, x = 〈11100〉, y = 〈11000〉
are two vertices of Q5 and (x, y) = 〈11 ∗ 00〉 is the edge that connects them. The distance between
two vertices x, y is defined by their Hamming distance, d(v, u) = |{j : xj 6= yj}|. For a fixed subset
of coordinates R ⊆ [n], we extend the definition of the distance as follows,

d(x, y,R) =

{
d(x, y), if ∀j ∈ [n] \R, xj = yj
∞, otherwise.

We define the level of a vertex x by the number of ‘ones’ it contains, w(x)
∑n

i=1 xi. We denote
by Li the set of vertices of level i ∈ [0, n]. We define the prefix sum of an edge e = (x, y), where

8The two half-cubes of order n are formed from Qn by connecting all pairs of vertices with distance exactly two
and dropping all other edges.
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the flip-bit is in the j-th coordinate, by p(e) =
∑j−1

i=1 xi. We represent any ordering π of V (Qn), by
labeling the vertices with labels 1, . . . , 2n, where label i corresponds to ranking i in π.

3.1 Description of Gm

For a positive integer m, we define a graph Gm = (Vm, Em) that is a restriction of Q4m on Vm =
V1 ∪ V2 ∪ V3 ⊆ V (Q4m). A vertex of V1 is defined by 2m− 1 concatenations of pairs 〈01〉 and 〈10〉
and a single pair 〈00〉 that appears in the second half of the string. A vertex of V2 is defined by 2m
concatenations of 〈01〉 and 〈10〉. A vertex of V3 is defined by 2m − 2 concatenations of 〈01〉 and
〈10〉, one pair 〈11〉 that appears on the first half of the string, and one pair 〈00〉 that appears on
the second half. For example, for m = 2, 〈01 10 00 10〉 ∈ V1, 〈01 10 10 10〉 ∈ V2, 〈01 11 10 00〉 ∈ V3.
More formally, let A = {〈01〉, 〈10〉}, then the subsets V1, V2, V3 are defined as follows:

V1 := V1(m) = {〈ajbj〉2mj=1| ∃i ∈ [m+ 1, 2m] s.t. 〈aibi〉 = 〈00〉 and ∀j 6= i, 〈ajbj〉 ∈ A},
V2 := V2(m) = {〈ajbj〉2mj=1| ∀j, 〈ajbj〉 ∈ A},
V3 := V3(m) = {〈ajbj〉2mj=1| ∃i1 ∈ [m],∃i2 ∈ [m+ 1, 2m] s.t.

〈ai1bi1〉 = 〈11〉, 〈ai2bi2〉 = 〈00〉 and ∀j 6= i1, i2, 〈ajbj〉 ∈ A}.

Observe that Gm is bipartite with vertex partitions V1 and V2 ∪V3, as vertices of V1 belong to level
2m− 1, while vertices of V2 ∪ V3 to level 2m.

Lemma 5. Every pair of vertices x, x′ ∈ V1(m) with d(x, x′, [2m]) = 2, have a unique common
neighbor y ∈ V3(m). Also, every pair of vertices x, x′ ∈ V2(m), with d(x, x′, [2m+ 1, 4m]) = 2, have
a unique common neighbor y ∈ V1(m).

Proof. Recall that (by definition) if d(x, x′, R) 6= ∞ then x, x′ should coincide in all but the R
coordinates. For the first statement, observe that the premises of the Lemma hold only if there
exists s ∈ [m] such that x2s−1x2s = 〈10〉 and x′2s−1x

′
2s = 〈01〉 (or the other way around), in which

case the required vertex y from V3(m) has y2s−1y2s = 〈11〉; the rest of the bits are the same
among x, x′, y. For the second statement, the premises of the Lemma hold only if there exists an
s ∈ [m+ 1, 2m] such that x2s−1x2s = 〈10〉 and x′2s−1x

′
2s = 〈01〉 (or the other way around), in which

case the required vertex y from V1(m) has y2s−1y2s = 〈00〉 and the rest of the bits are the same
among x, x′, y.

3.2 Ramsey-type Theorem

Lemma 6. For any positive integer m, and for sufficiently large n ≥ n0 = g(m), any 2-edge coloring
χ of Qn, contains a monochromatic copy of Gm

9.

Proof. The proof follows ideas of Alon et al. [4]. Consider a hypercube Qn, with sufficiently large
n > 6m to be determined later, and some arbitrary 2-edge-coloring χ : E(Qn)→ {1, 2}. Let E∗ be
the set of edges between vertices of L4m−1 and L4m (recall that Li = {v|w(v) = i}).

Each edge e ∈ E∗ contains 4m−1 1’s, a flip-bit represented by ∗ and the rest of the coordinates
are 0. Moreover, e is uniquely determined by its 4m non-zero coordinates Re ⊆ [n] and its prefix
sum p(e) ∈ [0, 4m−1] (number of 1′s before the flip-bit). Therefore, the color χ(e) defines a coloring
of the pair (Re, p(e)), i.e. χ(e) = χ(Re, p(e)). For each subset R ⊂ [n] of 4m coordinates, we denote
by c(R) = (χ(R, 0), ..., χ(R, 4m − 1)) the color induced by the edge coloring. The coloring of all
subsets R defines a coloring of the complete 4m-uniform hypergraph of [n]10 using 24m colors.

9The result could be extended to any (fixed) number of colors, but we need only two for our application.
10A k-uniform hypergraph is a hypergraph such that all its hyperedges have size k.
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By Ramsey’s Theorem for hypergraphs [35], there exists n0 = g(m) such that for any n ≥ n0

there exists some subset U ⊂ [n] of size 6m such that all 4m-subsets R ⊂ U have the same color
c(R) = c∗. Therefore, for every R1, R2 ⊂ U and p ∈ [0, 4m − 1], it is χ(R1, p) = χ(R2, p) =
cp. Since p takes 4m values and there are only two different colors, there must exist 2m indices
p0, . . . , p2m−1 ∈ [0, 4m − 1] with the same color χ(R, pi) = χ∗, for all R ⊂ U , |R| = 4m and
i ∈ [0, 2m− 1].

It remains to show that the graph formed with the edges that are determined by those prefix
sums, contains a monochromatic copy of Gm. We will show this by constructing those edges from
Em (the set of edges of Gm). By inserting blocks of 1’s of suitable length among the bits of the
edges of Em, we construct the bits at the coordinates of U . The rest of the bits (n − |U |) are set
to zero.

Let 1r be a string of r 1’s and define βi = 1pi−pi−1−1 for i ∈ [2m − 1], β0 = 1p0 and β2m =
14m−1−p2m−1 . For any edge e = 〈ajbj〉j ∈ Em, we insert β0 at the beginning of the string, for
j ∈ [m] we insert βj between aj and bj and for j ∈ [m + 1, 2m] we insert the string βj after
bj . Recall that each edge of Em contains exactly 2m zero bits. Also notice that

∑
j |βj | = p0 +∑2m−1

i=1 (pi − pi−1 − 1) + 4m− 1− p2m−1 = −(2m− 1) + 4m− 1 = 2m. Therefore, in total we have
6m bits (same as the size of U) and 4m non-zero bits (same as the size of R). These 6m bits are
put precisely at the coordinates of U . The rest n− 6m of the coordinates are filled with zeros.

It remains to show that for such edges the prefix of the flip-bit is always one of the p0, . . . , p2m−1.
This would imply that all these edges are monochromatic. Furthermore, all but 4m coordinates are
fixed and the 4m coordinates form exactly the sets V1(m), V2(m), V3(m); therefore, the monochro-
matic subgraph is isomorphic to Gm.

For any edge e = 〈ajbj〉j ∈ Em, let the flip-bit be at position:

• aj for j ∈ [m]. Its prefix is
∑j−1

i=0 βi + (j− 1) = pj−1, where the term j− 1 corresponds to the
number of pairs 〈asbs〉 with s < j, each of which contributes to the prefix with a single 1.

• bj for j ∈ [m]. Since j ≤ m, aj = 1. Then the prefix equals to
∑j

i=0 βi + (j − 1) + 1 = pj .

• aj or bj for j ∈ [m+ 1, 2m]. For such j, 〈ajbj〉 ∈ {〈0∗〉, 〈∗0〉} and all other pairs belong to A.

Therefore, the prefix is equal to
∑j−1

i=0 βi + (j − 1) = pj−1.

3.3 Coloring based on the labels

This part of the proof shows that for any ordering of the vertices of a hypercube Qn, there is a
2-edge coloring with the following property: in the monochromatic Gm, either all the vertices of V1

or all the vertices of V2 have neighbors in Gm with only higher label. This implies a desired labeling
property for a Q2

m subgraph of Qn, the structure of which is defined next.

Definition 7. We define Qsn to be a subdivision of Qn, by replacing each edge by a path of length
s. Q1

n is simply Qn. We denote by Z(Qsn) the set of all pairs of vertices (x, x′), which correspond
to edges of Qn; P (x, x′) is the corresponding path in Qsn. For every (x, x′) ∈ Z(Q2

m), we denote by
θ(x, x′) the middle vertex of P (x, x′).

In the next lemma we show that for any ordering of the vertices of Qn, there exists a subgraph
isomorphic to Q2

m, such that the ‘middle’ vertices have higher label than their neighbors (Labeling
Property).
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Figure 3: Examples of (a) Q2
3 and (b) Q4

2. The labels on the nodes are examples of the labeling
property, (a) after one inductive step, (b) after two inductive steps.

Lemma 8. For any positive integer m, for all n ≥ n0 = g(m) and for any ordering π of V (Qn),
there exists a subgraph W of Qn that is isomorphic to Q2

m, such that for every (x, x′) ∈ Z(W ), it
is π(θ(x, x′)) > max{π(x), π(x′)}.

Proof. Choose a sufficiently large n ≥ n0 = g(m) as in Lemma 6. Partition the vertices of Qn into
sets O, E of vertices of odd and even level, respectively. We color the edges of Qn as follows. For
every edge e = (z, z′) with z ∈ O and z′ ∈ E , if π(z) < π(z′), then paint e blue. Otherwise paint
it red. Therefore, for every blue edge, the endpoint in O has smaller label than the endpoint in E .
The opposite holds for any red edge.

Lemma 6 implies that Qn contains a monochromatic copy (blue or red) of Gm. Recall that Gm
is bipartite between vertices of levels L4m−1 and L4m and that V1 ⊂ L4m−1 ⊂ O and V2 ∪ V3 ⊂
L4m ⊂ E . Let R ⊂ [n] be the subset of the 4m coordinates that correspond to vertices of Gm. Also
let R1 and R2 be the subsets of the first 2m and the last 2m coordinates of R, respectively.

First suppose that Gm is blue. An immediate implication of our coloring is that for every
edge (z, z′) ∈ Em with z ∈ V1, z′ ∈ V2 ∪ V3 it must be π(z) < π(z′). Fix a 2m-bit string s that
corresponds to a permissible bit assignment to the R2 coordinates of some vertex in V1 (see Section
3.1). Define Ws as the subset of vertices of V1 where the R2 coordinates are set to s. Recall that
each of the first m pairs 〈ajbj〉, j ∈ [m], of a vertex z ∈Ws, may take any of the two bit assignments
〈01〉 and 〈10〉. Hence, |Ws| = 2m.

Observe that we can embed Ws into Qm with distortion 1 and scaling factor 1/2, by mapping the
first m pairs of bits into single bits; map 〈01〉 to 0 and 〈10〉 to 1. Every two vertices with distance d
in Qm, have distance 2d in Qn. For every x, x′ ∈Ws ⊂ V1 with d(x, x′) = 2, Lemma 5 implies that
there exists y = θ(x, x′) ∈ V3, such that d(x, y) = d(x′, y) = 1. Therefore, π(y) > max{π(x), π(x′)}.
Take the union Y = ∪y of all such vertices y, then Ws ∪ Y induces a subgraph W isomorphic to
Q2
m, that fulfills the labeling requirements.

The case of Gm being red is similar. We focus only on vertices V2. Fix now a 2m-bit string s
that corresponds to a permissible bit assignment of the R1 coordinates of a vertex in V2. Define
Ws as the subset of vertices of V2 where the R1 coordinates are set to s. Similarly, we can embed
Ws into Qm with distortion 1 and scaling factor 1/2.

For every x, x′ ∈Ws ⊂ V2 with d(x, x′) = 2, where the R1 coordinates are fixed to s, Lemma 5
implies that there exists y = θ(x, x′) ∈ V1, such that d(x, y) = d(x′, y) = 1. Therefore, π(y) >
max{π(x), π(x′)}. Take the union Y = ∪y of all such vertices y, then Ws ∪ Y induces a subgraph
W isomorphic to Q2

m, that fulfills the labeling requirements.
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3.4 Lower Bound Construction

Now we are ready to prove the main theorem of this section.

Theorem 9. For every positive integer r, and for sufficiently large n = n(r), there exists a graph
Qn such that, for every ordering π of its vertices, it contains a zig-zag distance preserving path
Pr(π).

Proof. Let g be a function as in Lemma 6. We recursively define the sequence n0, n1, . . . , nr, such
that nr = 1 and ni−1 = g(ni), for i ∈ [r]. We will show that Qn0 (n0 = n(r)) is the graph we are
looking for.

Claim 10. For every i ∈ [0, r], and for any vertex ordering π of Qn0 , it contains a subgraph
isomorphic to Q2i

ni , such that for every (x, x′) ∈ Z(Q2i
ni), P (x, x′) is a distance preserving path

isomorphic to Pi(π).

Proof. The proof is by induction on i. As a base case, Q20
n0

= Qn0 is the graph itself. An edge is

trivially a path P0(π), for any π. Suppose now that Qn0 contains a subgraph isomorphic to Q2i
ni ,

for some i < r, such that for every q ∈ Z(Q2i
ni), P (q) is a path Pi(π). It is sufficient to show that

Q2i
ni contains a subgraph isomorphic to Q2i+1

ni+1
, such that for every q ∈ Z(Q2i+1

ni+1
), P (q) is a path

Pi+1(π).
For every (x, x′) ∈ Z(Q2i

ni), if we replace P (x, x′) with a direct edge e = (x, x′), the resulting
graph is a copy of Qni . Applying Lemma 8 on Qni , guarantees the existence of a subgraph W
isomorphic to Q2

ni+1
(ni = g(ni+1)), where for every (y, y′) ∈ Z(W ), π(θ(y, y′)) > max{π(y), π(y′)}.

Each of the edges (y, θ(y, y′)) and (y′, θ(y, y′)) of Q2
ni+1

are replaced by a path Pi(π) in Q2i
ni .

Therefore, W is a copy of Q2i+1

ni+1
, with P (y, y′) being a path Pi+1(π).

We now argue that the resulting Pr(π) is a distance preserving path. Our analysis indicate a
sequence of hypercubes Qn0 , Qn1 , . . . , Qnr . Recall that in Lemma 8, in order to get Qni+1 from Qni
we mapped 〈01〉 to 0 and 〈10〉 to 1 and the vertices of Qni+1 did not differ in any other bit but
the ones we mapped. Consider now the two vertices x, x′ of Qnr = Q1 with bit-strings 〈0〉 and 〈1〉,
respectively. Their Hamming distance in their original bit representation (in Qn0) should be 2r,
the same with their distance in Pr(π). Moreover, if any two vertices of Pr(π) are closer in Qn0 than
in Pr(π), then this would contradict the fact that dQn0 (x, x′) = 2r.

Finally we extend Qn so that for any order π of its vertices, a path Pr(π) exists along with the
shortcuts as shown in the example in Figure 1(a).

Theorem 11. Any ordered universal cost-sharing protocol on undirected graphs admits a PoA of
Ω(log k), where k is the number of activated vertices.

Proof. Let k = 2r + 1 for some positive integer r. From Theorem 9, we know that for any vertex
ordering π of Qn(r) there is a distance preserving path Pr(π).

We use Qn(r) as a basis to construct the weighted graph Q̃n(r) with vertex set V (Q̃n(r)) =
Qn(r) ∪ {t}, where t is the designated root. We connect every pair of vertices x, y with a direct
edge of cost ce = 2r, if t is one of its endpoints, otherwise its cost is ce = dQn(r)(x, y) (similar to
Figure 1(a)).

The adversary selects to activate the vertices of Pr(π), and the lower bound follows; in the NE
the players choose their direct edges to connect with one of their parents (see at the beginning of
Section 3 for the term “parent”).
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4 Lower Bound for all universal protocols

In this section, we exhibit metric spaces for which no universal cost-sharing protocol admits a PoA
better than Ω(log k). Due to the characterization of [22], we can restrict ourselves in generalized
weighted Shapley protocols (GWSPs). We follow the notation of [22], and for the sake of self-
containment we include here the most related definitions and lemmas.

4.1 Cost-Sharing Preliminaries

A strictly positive function f : 2N → R+ is an edge potential on N , if it is strictly increasing, i.e.
for every R ⊂ S ⊆ N , f(R) < f(S), and for every S ⊆ N ,

∑
i∈S

f(S)−f(S\{i})
f({i}) = 1. For simplicity,

instead of f({i}), we write f(i). A cost-sharing protocol is called potential-based, if it is defined
by assigning to each edge of cost c, the cost-sharing method ξ, where for every S ⊆ N and i ∈ S,
ξ(i, S) = c · f(S)−f(S\{i})

f(i) .
Let Ξ1 and Ξ2 be two cost-sharing protocols for disjoint sets of vertices U1 and U2, with methods

ξ1 and ξ2, respectively. The concatenation of Ξ1 and Ξ2 is the cost sharing protocol Ξ of the set
U1 ∪ U2, with method ξ defined as

ξ(i, S) =


ξ1(i, S ∩ U1) if i ∈ U1

ξ2(i, S) if S ⊆ U2

0 otherwise

Note that the concatenation of two protocols for disjoint sets of vertices defines an order among
these two sets. The GWSPs are concatenations of potential-based protocols.

Lemma 12. (Lemma 4.10 of [22]). Let f be an edge potential on N and ξ the induced (by f)
cost-sharing method, for unit costs. For k ≥ 1 and a constant α, with 1 ≤ α2k ≤ 1 + k−3, let
S ⊆ N be a subset of vertices with f(i) ≤ αf(j), for every i, j ∈ S. If |S| ≤ k, then for any i, j ∈ S,
ξ(i, S) ≤ α(ξ(j, S) + 2k−2).

Lemma 13. (Lemma 4.11 of [22]). Let f be an edge potential on N , and ξ be the cost-sharing
method induced by f , for unit cost. For any two vertices i, j ∈ N , such that f(i) ≥ βf(j):
ξ(i, {i, j}) ≥ β/(β + 1) and for every S ⊇ {i, j}, ξ(j, S) ≤ 1/(β + 1).

4.2 Lower Bound

The following two technical lemmas will be used in our main theorem.

Lemma 14. Let X be a finite set of size msr2, and X1, . . . , Xm be a partition of X, with |Xi| = sr2,
for all i ∈ [m]. Then, for any coloring χ of X such that no more than r elements have the same
color, there exists a rainbow subset S ⊂ X (i.e. χ(v) 6= χ(u) for all v, u ∈ S), with |S ∩Xi| = s for
every i ∈ [m].

Proof. Given the partition X1, . . . , Xm of X and the coloring χ, we construct a bipartite graph
G = (A,B,E), where A is the set of colors used in χ. For every Xi we create a set Bi of size s;
then B = ∪Bi. If color j is used in Xi, we add an edge (j, l) for all l ∈ Bi.

Each color j ∈ A appears in at most r distinct Xi sets, and since for each Xi there are s vertices
(Bi), the degree of j is at most rs. On the other hand, each Xi has size r2s and hence, it has at
least rs different colors. Therefore, the degree of each vertex of B is at least rs.

Consider any set R ⊆ B, and let E(R) be the set of edges with at least one endpoint in
R. If N(R) denotes the set of neighbors of R, observe that E(R) ⊆ E(N(R)). By using the
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degree bound on vertices of B, |E(R)| ≥ rs|R| and by using the degree bound on vertices of A,
|E(N(R))| ≤ rs|N(R)|. Therefore, |R| ≤ |N(R)|. By Hall’s Theorem there exists a matching
which covers every vertex in B. Each vertex in Bi is matched with a distinct color and therefore in
each Xi there exists a subset with at least s elements with distinct colors; let Wi be such a subset
with exactly s elements. In addition the colors in different Wi subsets should be distinct by the
matching. Then, S = ∪Wi.

Lemma 15. Let X = (X1, . . . , Xm) be a partition of [m2], with |Xi| = m, for all i ∈ [m]. Then,
there exists a subset S ⊂ [m2] with exactly one element from each subset Xi, such no two distinct
x, y ∈ S are consecutive, i.e. for every x, y ∈ S, |x− y| ≥ 2.

Proof. For every i, let Xi = {xi1, . . . , xim}. W.l.o.g we can assume that the xij ’s are in increasing
order with respect to j and in addition that Xi’s are sorted such that xii < xji, for all j > i
(otherwise rename the elements recursively to fulfill the requirement). Then, it is not hard to see
that S = {xkk|k ∈ [m]} can serve as the required set.

Now we proceed with the main theorem of this section. We create a graph where every GWSP
has high PoA. At a high level, we construct a high dimensional hypercube with sufficiently large
number of potential players at each vertex (by adding many copies of each vertex connected via
zero-cost edges). Moreover, we add shortcuts among the vertices of suitable costs and we connect
each vertex with t via two parallel links with costs that differ by a large factor (see Figure 4).
If the protocol induces a large enough set of potential players with Shapley-like values in some
vertex, then it is a NE that all these players follow the most costly link to t. Otherwise, by using
Lemmas 14 and 15 we show that there exists a set of potential players B, with ordered-like values,
one at each vertex of the hypercube. Then, by using the results of Section 3, there exists a path
where the vertices are zig-zag-ordered.

The separation into these two extreme cases was first used in [22]. The crucial difference, is that
for their problem the protocol is specified independently of the underlying graph, and therefore the
adversary knows the case distinction (ordered or shapley) and bases the lower bound construction
on that. However, our problem requires more work as the graph should be constructed in advance,
and should work for both cases.

Theorem 16. There exist graph metrics, such that the PoA of any universal cost-sharing protocol
is at least Ω(log k), where k is the number of activated vertices.

Proof. Let k = 2r−1 + 1 be the number of activated vertices with r ≥ 4, (hence k ≥ 9).

Graph Construction. We use as a base of our lower bound construction, a hypercube Q := Qn,
with edge costs equal to 1 and n = n(r) as in Theorem 9. Based on Q, for M = 16k1223n we
construct the following network with N = 2nM vertices, plus the designated root t. We add to Q
direct edges/shortcuts as follows: for every two vertices v, u of distance 2j , for j ∈ [r], we add an

edge/shortcut, (v, u), with cost equal to ĉj = 2j
(
k−1
k

)j
= Ω(2j). Moreover, for every vertex vq of

Q, we create M − 1 new vertices, each of which we connect with vq via a zero-cost edge. Let Vq
be the set of these vertices (including vq). Finally, we add a root t, which we connect with every
vertex vq of Q, via two edges eq1 and eq2, with costs 2k and 2k · k/6, respectively. We denote this
new network by Q∗ (see Figure 4).

We will show that any GWSP for Q∗ has PoA Ω(log k). Any GWSP can be described by
concatenations of potential-based cost-sharing protocols Ξ1, . . . ,Ξh for a partition of the V (Q∗)
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Figure 4: An example of Q∗ for Q2 as the base hypercube.

into h subsets U1, . . . , Uh, where Ξj is induced by some edge potential fj . Following the analysis
of Chen, Roughgarden and Valiant [22], we scale the fj ’s such that for every i, j, fj(i) ≥ 1. For

nonnegative integers s and for α =
(
1 + k−3

) 1
2k , we form subgroups of vertices Ajs, for each Uj , as

Ajs = {i ∈ Uj : fj(i) ∈
[
αs, αs+1

]
} (note that some of Ajs’s may be empty).

The adversary proceeds in two cases, depending on the intersection of the Ajs’s with the Vq’s.
Shapley-like cost-sharing. Suppose first that there exist Ajs and Vq such that |Ajs ∩ Vq| ≥ k,
and take a subset R ⊆ Ajs ∩ Vq with exactly k vertices. The adversary will request precisely the
set R. Budget-balance implies that there exists some vertex i∗ ∈ R which is charged at most
1/k proportion of the cost. Moreover, Lemma 12 implies that, all i ∈ R are charged at most
α(1/k + 2k−2) ≤ 2 · (3/k) = 6/k proportion of the cost.

Note that there is a NE where all players follow the edge eq2, with cost 2k · k/6; no player’s
share is more than 2k and any alternative path would cost at least 2k. However, the optimum
solution is to use the parallel link eq1 of cost 2k. Therefore, the PoA is Ω(k) for this case.
Ordered-like cost-sharing. If there is no such R with at least k vertices, then |Ajs ∩ Vq| ≤ k
for all j, s and q, which means that each Ajs has size of at most k2n. For every j ∈ [h], we group
consecutive sets Ajs (starting from Aj0) into sets Bjl, such that each Bjl, (except perhaps from the
last one), contains exactly 4k5 nonempty Ajs’s. The last Bjl contains at most 4k5 nonempty Ajs
sets. Consider the lexicographic order among Bjl’s, i.e. Bjl < Bj′l′ if either j < j′ or j = j′ and
l < l′. Rename these sets based on their total order as Bi’s. The size of each Bi is at most 4k62n.

Now we apply Lemma 14 on the set N , for r = 4k62n and s = m = 2n, by considering the
subsets Vq as the partition of N (recall that |Vq| = M = r2s). As a coloring scheme, we color all
the vertices of each Bi with the same color and use different colors among the sets Bi. Lemma 14
guarantees that for each Vq there exists V ′q ⊂ Vq of size 2n, such that every v ∈ V ′ = ∪qV ′q belongs
to a distinct Bi.

The order of Bi’s suggests an order of the vertices of V ′. Since the V ′q ’s form a partition of V ′,
Lemma 15 guarantees the existence of a subset C ⊂ V ′, such that C contains exactly one vertex
from each V ′q and there are no consecutive vertices in C. This means that C contains exactly one
vertex from each set Vq and all these vertices belong to different and non-consecutive sets Bi.

To summarize, so far we know that:

(i) for any pair of vertices v, u ∈ C, either v and u come from different Uj ’s or their fj(v) and

fj(u) values differ by a factor of at least α4k5 ≥ 8k+1 (since there exist at least 4k5 nonempty
sets Ajs between the ones that v and u belong to).

(ii) C is a copy of Qn (by ignoring zero-cost edges).
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Let π be the order of vertices of C (recall that they are ordered according to the Bi’s they belong
to). Theorem 9 guarantees that there always exists at least one distance preserving path Pr(π)
(see Definition 4). Let S be the vertices of Pr(π) excluding the last class Dr (see Definition 3).
The adversary will activate this set S (|S| = k). It remains to show that there exists a NE,
the cost of which is a factor of Ω(log k) away from optimum. We will refer to these vertices as
S = {s1, s2, . . . , sk}, based on their order π, from smaller label to larger, and let player i be
associated with si.

Let P ′ be the class of strategy profiles P = (P1, . . . , Pk) which are defined as follows:

• P1 = e11 and P2 = (s1, s2) ∪ P1, where (s1, s2) is the shortcut edge between s1 and s2.

• From i = 3 to k, let s` ∈ Π(si) be one of si’s parents in the class hierarchy (we refer the
reader to the beginning of Section 3); then Pi = (si, s`) ∪ P`, where (si, s`) is the shortcut
edge between si and s`.

We show in Claim 17 that there exists a strategy profile P∗ ∈ P ′ which is a NE. P∗ has cost:

c(P∗) = c(e11) + ĉr +

r−1∑
j=1

|Dj | · ĉr−j = Ω(2r) + Ω(2r) +

r−1∑
j=1

2j−1 · Ω(2r−j) = Ω(r2r).

However, there exists the solution Pr(π) ∪ e11, which has cost of O(2r). Therefore, the PoA is
Ω(r) = Ω(log k).

Claim 17. There exists P∗ ∈ P ′ which is a Nash equilibrium.

Proof. We prove the claim by using better-response dynamics. Note that any GWSP induces a
potential game for which better-response dynamics always converge to a NE (see [22, 33]). We
start with some P1 ∈ P ′ and we prove that, after a sequence of players’ best-responses, we end up
in P2 ∈ P ′. Proceeding in a similar way we eventually converge to P∗, which is the required NE.

We next argue that for any P ∈ P ′, players 1 and 2, have no incentive to deviate from P1 (argu-
ment (a)) and P2 (arguments (b)), respectively. We further show that, given any strategy profile P̂,
there exists some P ∈ G such that: for every player i /∈ {1, 2}, if Pi = (P1, . . . , Pi−1, P̂i+1, . . . , P̂k)
are the strategies of the other players, i prefers Pi to P̂i (arguments (c)-(e)). We define the de-
sired P recursively as follows: P1 = e11, P2 = (s1, s2) ∪ P1 and from i = 3 to k, Pi ∈ A =
arg minP ′i {ci(P

i, P ′i )|∃(P ′i+1, . . . , P
′
k) s.t. (P1, . . . , Pi−1, P

′
i , . . . , P

′
k) ∈ P ′}. If P̂i ∈ A then we set

Pi = P̂i, otherwise we choose a path from A arbitrarily.
We first give some bounds on players’ shares.

1. Let R ⊆ S be any set of players that use some edge e of cost ce and let i be the one with the

smallest label. The total share of players R\{i} is upper bounded by
∑|R|−1

i=1
1

(8k+1)i+1
·ce < ce

8k

(Lemma 13). Moreover, i’s share is at least 8k−1
8k ce.

2. The total cost of any Pi under Pi, is at most 8k. This is true because, for every player
i′ with i′ ≤ i, the first edge of Pi′ is a shortcut to reach one of si′ ’s parents, with cost at
most 2r−j , where Dj is the class that si′ belongs to. Therefore, the cost of Pi is at most
2k +

∑r−1
l=0 2r−l < 8k.

3. By combining the above two arguments, under Pi, the total share of player i for the edges of
Pi at which she is not the first according to π, is at most 1

8k · 8k ≤ 1.

Here, we give the arguments for players 1 and 2.
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(a) The share of player 1 under P is at most 2k and any other path would incur a cost strictly
greater than 2k.

(b) The share of player 2 under P is at most 2r + 1 = 2k−1 (argument 3), whereas if she doesn’t
connect through s1, her share would be at least 2k. Moreover, if she connects to t through
s1 but by using any other path rather than the shortcut (s1, s2), the total cost of that path

is at least 2r
(
k−1
k

)r−1
. Player 2 is first according to π at that path and by argument 1, her

share is at least 2r 8k−1
8k

(
k−1
k

)r−1
> ĉr.

We next give the required arguments in order to show that Pi is a best response for player i 6= {1, 2}
under Pi. In the following, let si ∈ Dj and let s` be the parent of si such that Pi = (si, s`) ∪ P`.
Also let si′ be the predecessor of si, according to π, that is first met by following P̂i from si to t.

(c) Suppose that si′ = s`.

• Assume that P̂i doesn’t use the shortcut (si, s`). The subpath of P̂i from si to s` contains

edges at which i is first according to π of total cost at least 2r−j
(
k−1
k

)r−j−1
. By argument

1, her share is at least 2r−j 8k−1
8k

(
k−1
k

)r−j−1
> ĉr−j .

• Assume that P̂i doesn’t use P`. The subpath of P̂i from s` to t contains edges at which
i is first according to π of total cost at least 2 (the minimum distance between two
activated vertices). By argument 1, her share is at least 28k−1

8k > 1, where 1 is at most
her share for P` (argument 3).

(d) Suppose that si′ is si’s other parent. If P̂i 6= (si, si′)∪Pi′ , the above arguments still hold and
so ci(P

i, Pi) < ci(P
i, P̂i). Otherwise, by the definition of Pi, either Pi = P̂i, or ci(P

i, Pi) <
ci(P

i, P̂i).

(e) Suppose that si′ is not a parent of si. Player i’s share in Pi is at most ĉr−j for her first
edge/shortcut and at most 1 for the rest of her path (argument 3). However, all edges that
are used by players that precedes i in π have cost at least ĉr−j . Therefore, in P̂i, player i is
the first according to π for edges of total cost at least ĉr−j+1. This implies a cost-share of at
least 8k−1

8k ĉr−j+1 (argument 1). But for k ≥ 6 and j < r, 8k−1
8k ĉr−j+1 > ĉr−j + 1.

We now describe a sequence of best-responses from some P̂ ∈ P ′ to P (P is constructed based
on P̂ as described above). We follow the π order of the players and for each player we apply her
best response. First note that players 1 and 2 have no better response, so P1 = P̂1 and P2 = P̂2.
When we process any other player i, we have already processed all her predecessors in π and so,
the strategies of the other players are Pi. Therefore, Pi is the best response for i (it may be that
Pi = P̂i, where no better response exists for i). The order that we process the vertices guarantees
that P ∈ P ′.

5 Outerplanar Graphs

In this section we show that there exists a class of graph metrics, prior knowledge of which can dra-
matically improve the performance of good network cost-sharing design. For outerplanar graphs,
we provide a universal cost-sharing protocol with constant PoA. In contrast, we stress that uniform
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protocols cannot achieve PoA better than Ω(log k), because the lower bound for the greedy algo-
rithm of the OSTP can be embedded in an outerplanar graph (see Figure 5(a) for an illustration).

We next define an ordered universal cost-sharing protocol Ξtour, and we show that it has constant
PoA. W.l.o.g. we assume that the metric space is defined by a given biconnected outerplanar
graph11. Every biconnected graph admits a unique Hamiltonian cycle [49] that can be found in
linear time [27]. Ξtour orders the vertices according to the cyclic order in which they appear in
the Hamiltonian tour, starting from t and proceeding in a clockwise order π. In Figure 5(a),
π(q8) < π(q4) < π(q9) < . . . < π(q15).

(a) (b)

Figure 5: (a) shows an example of an outerplanar graph where the order qi < qi+1 gives PoA of Ω(log k). (b)
illustrates some elements from the proof of Theorem 19, focusing on cycle C2. The dashed components represent the
optimum tree T ∗.

As a warm-up, we first bound from above the PoA of Ξtour for cycle graphs, and then extend
it to all outerplanar graphs.

Lemma 18. The PoA of Ξtour in cycle graphs is at most 2.

Proof. Consider a cycle graph C = (V,E, t) and let S ⊆ V be the set of the activated vertices. Let
T ∗ be the minimum Steiner tree (path) that connects S ∪ {t}, and a, b be its two endpoints. Note
that minimality of T ∗ implies that a, b ∈ S∪{t}. a and b partition C into two paths (T ∗, C\T ∗) and
t divides further T ∗ into two paths P ′1, P ′2. Let S1 = {u1, . . . , ur = a} and S2 = {w1, . . . , ws = b}
be the activated vertices of P ′1 and P ′2, respectively. W.l.o.g., assume that π(ui) < π(ui+1) and
π(wj+1) < π(wj), for all i, j.

Consider any NE, P = (Pi)i∈N . We bound from above the share of each player v 6= ws, by
its distance from their immediate predecessor in π, as follows. By adopting the convention that
u0 = t,

cui(P) ≤ d(ui, ui−1), ∀i ∈ [r], cwj (P) ≤ d(wj , wj+1), ∀j ∈ [s− 1].

Also cws(P) ≤ d(ws, t). Overall,

c(P) =
∑
v∈S

cv(P) ≤
∑
ui∈S1

d(ui, ui−1) +
∑

wj∈S2−{ws}

d(wj , wj+1) + d(ws, t)

≤ c(P ′1) + c(P ′2) + c(P ′2) ≤ 2c(T ∗).

11If it is not already biconnected, we turn it into an equivalent biconnected graph, by appropriately adding edges of
infinity cost. By equivalent we mean that any NE outcome and the minimum Steiner tree solution remain unchanged
after the transformation. Equivalence is obvious since we only add edges of infinity costs that cannot be used in
neither any NE nor the minimum Steiner tree outcome.
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Theorem 19. The PoA of Ξtour in outerplanar graphs is at most 8.

Proof. Based on the previous discussion, it is sufficient to consider only biconnected outerplanar
graphs with non-negative costs, including infinity. Let G = (V,E, t) be any such graph with S
being the set of activated vertices.

Let T ∗ be the minimum Steiner tree that connects S ∪ {t}, and C be the unique Hamiltonian
tour of G, forming its outer face. Let E∗ = E(T ∗) \ E(C) be the set of non-crossing chords of C
that belong to T ∗. Then C ∪E∗ forms |E∗|+ 1 = r cycles C1, . . . , Cr, where every pair Ci, Cj are
either edge-disjoint or they have a single common edge belonging to E∗. On the other hand, each
edge of C belongs to exactly one Ci and each edge of E∗ belongs to exactly two Ci’s. Figure 5(b)
provides an illustration.

For every i ∈ [r], let Si = (S ∪ {t}) ∩ V (Ci) be the activated vertices that lie in Ci and ti be
the vertex that is first in π among Si. W.l.o.g. assume that, for all i ∈ [r − 1], π(ti) ≤ π(ti+1)
(then t1 = t). Also let T ∗i be the subgraph of T ∗ that intersects with Ci. Then T ∗i should be a path
connecting Si.

Consider any NE, P = (Pi)i∈S . We show separately that the shares of all Si \ {ti} are bounded
by 4c(T ∗) and the shares of all ti’s are bounded by 4c(T ∗).

For the first case we use Lemma 18. For any cycle Ci, by considering ti as the root, Lemma 18
provides a bound on the shares of Si \ {ti}. So,

∑
v∈Si\{ti} cv(P) ≤ 2c(T ∗i ). Recall, that each edge

of E(T ∗) belongs to at most two Ci’s, so by summing over all i ∈ [r],∑
i∈[r]

∑
v∈Si\{ti}

cv(P) ≤ 2
∑
i∈[r]

c(T ∗i ) ≤ 4c(T ∗).

The second case requires more careful treatment. The endpoints of the edges of E∗ divide C
into a partition of nonzero-length arcs, A1, . . . , An, named based on their clockwise appearance in
C, starting from an arc containing t. For every j ∈ [n], let aj and bj be the two endpoints of Aj .
The share of each ti can be bounded by its distance from ti−1, for i > 1 (recall that t1 = t). Let
Asi be an arc that ti lies, then∑

i∈[2,r]

cti(P) ≤
∑
i∈[2,r]

d(ti, ti−1) ≤
∑
i∈[r]

(d(asi , ti) + d(ti, bsi)) +
∑

j∈[n]\{s1,...,sr}

d(aj , bj) = F.

We next upper bound F by
∑

i∈[r] 2c(T ∗i ). Note that each arc Aj belongs to exactly one Ci and
every Ci contains at least one such arc (otherwise T ∗ would have a cycle). We concentrate to a
specific Ci and show that the portion of F associated with Ci’s arcs is upper bounded by 2c(T ∗i ).

Let Ai1, ..., Aini be the arcs belonging to Ci and aij , bij be the endpoints of Aij . Also let Ais
be the arc containing ti. Recall that T ∗i is a path and every edge of E(Ci) ∩ E∗ belongs to T ∗i .
Therefore, T ∗i contains entirely all but one Aij , say Aim (see also Figure 5(b)). We examine the
two cases of m = s and m 6= s separately.
Case 1: m = s. ais, bis (as endpoints of edges of E∗) and ti are vertices of the path T ∗i . Therefore,
either some path from ti to ais or some path from ti to bis belongs to T ∗i ; w.l.o.g. assume that it
is some path from ti to ais. Then

∑
j∈[ni],j 6=s d(aij , bij) + d(ti, ais) ≤ c(T ∗i ). Moreover, since bis and

ti are vertices of T ∗i , d(ti, bis) ≤ c(T ∗i ).
Case 2: m 6= s. Similarly,

∑
j∈[ni],j 6=m,s d(aij , bij) + d(ti, ais) + d(ti, bis) ≤ c(T ∗i ). Also aim and bim

are vertices of T ∗i and hence, d(aim, bim) ≤ c(T ∗i ).
To sum up, in both cases it holds that∑

j∈[ni],j 6=s

d(aij , bij) + d(ti, ais) + d(ti, bis) ≤ 2c(T ∗i ).
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By summing over all i, F ≤
∑

i∈[r] 2c(T ∗i ) ≤ 4c(T ∗). Finally, by summing over the whole S,
c(P) =

∑
v∈S cv(P) ≤ 8c(T ∗).

6 Stochastic Network Design

In this section we study the stochastic model, where the set of active vertices is drawn from some
probability distribution Π. Each vertex v is activated independently with probability pv; the set of
the activated vertices are no longer picked adversarially, but it is sampled based on the probabilities
pv’s, i.e., the probability that set S is active is Π(S) =

∏
v∈S pv ·

∏
v/∈S(1− pv). On the other hand,

the probabilities pv’s (and therefore Π), are chosen adversarially. The cost sharing protocol is
decided by the designer without the knowledge of the activated set and the designer may have
knowledge of Π or access to some oracle of Π.

We show that there exists a randomized ordered protocol that achieves constant PoA. This
result holds even for the black-box model [48], meaning that the probabilities are not known to the
designer, however she is allowed to draw independent (polynomially many) samples. On the other
hand, if we assume that the probabilities pv’s are known to the designer, there exists a deterministic
ordered protocol that achieves constant PoA. We note that both protocols can be determined in
polynomial time.

The result for the randomized protocol depends on approximation ratios of the minimum Steiner
tree problem. More precisely, given an α-approximate minimum Steiner tree, we show an upper
bound of 2(α + 2). The approximate tree is used in our algorithm as a base in order to construct
a spanning tree, which finally determines an order of all vertices; the detailed algorithm is given in
Algorithm 1. This algorithm and its slight variants have been used in different contexts: rend-or-
buy problem [36], a priori TSP [48] and, stochastic Steiner tree problem [30].

Algorithm 1: Randomized order protocol Ξrand

Input: A rooted graph G = (V,E, t) and an oracle for the probability distribution Π.
Output: Ξrand.

• Choose a random set of vertices R by drawing from distribution Π and construct an α-approximate
minimum Steiner tree, Tα(R), over R ∪ {t}.

• Connect all other vertices V \ V (Tα(R)) with their nearest neighbor in V (Tα(R)) (by breaking ties
arbitrarily).

• Double the edges of that tree and traverse some Eulerian tour starting from t. Order the vertices
based on their first appearance in the tour.

Theorem 20. Given an α-approximate solution of the minimum Steiner tree problem, Ξrand has
PoA at most 2(α+ 2).

Proof. Let π be the order of all vertices V , defined by Ξrand, and S be the random set of activated
vertices that require connectivity with t. For the rest of the proof we denote by MST (S) a minimum
spanning tree over S ∪ {t}.

Let s1, . . . , sr be the vertices of S as appeared in π and the strategy profile PR(S) = (P1, . . . , Pr)
be a NE of set S. Under the convention that s0 = t, csi(PR(S)) ≤ dG(si, si−1) for all si ∈ S. We
construct a tree TR,S from the Tα(R) of Algorithm 1, by connecting only all vertices of S\V (Tα(R))
with their nearest neighbor in V (Tα(R)) (by breaking ties in accordance to Algorithm 1). Note
that, by doubling the edges of TR,S , there exists an Eulerian tour starting from t, where the order
of the vertices S (based on their first appearance in the tour) is π restricted to the set S. Therefore,∑

si∈S dTR,S (si, si−1) + dTR,S (s0, sr) = 2c(TR,S). By combining the above,
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c(PR(S)) =
∑
si∈S

csi(PR(S)) ≤
∑
si∈S

dG(si, si−1) ≤
∑
si∈S

dTR,S (si, si−1) ≤ 2c(TR,S). (1)

Let Dv(R) be the distance of v from its nearest neighbor in (R∪{t})\{v}. In the special case that
v = t, we define Dv(R) = 0 Then,

c(TR,S) = c(Tα(R)) +
∑

v∈S\V (Tα(R))

Dv(V (Tα(R))) ≤ c(Tα(R)) +
∑
v∈S

Dv(R). (2)

We use an indicator I(v ∈ S) which is 1 when v ∈ S and 0 otherwise; then
∑

v∈S Dv(R) =
∑

v I(v ∈
S)Dv(R). By taking the expectation over R and S,

E
R

[E
S

[c(TR,S)]] ≤ E
R

[c(Tα(R))] + E
R

[
E
S

[∑
v∈V

I(v ∈ S)Dv(R)

]]
.

Since S and R are independent samples we can bound the second term as:

E
R

[
E
S

[∑
v∈V

I(v ∈ S)Dv(R)

]]
=

∑
v∈V

E
S

[I(v ∈ S)]E
R

[Dv(R)] =
∑
v∈V

E
S

[I(v ∈ S)]E
S

[Dv(S)]

= E
S

[∑
v∈V

I(v ∈ S)Dv(S)

]
≤ E

S
[c(MST (S))]. (3)

The last equality holds since Dv(S) is the distance of v from its nearest neighbor in (S ∪ {t}) \ {v}
and it is independent of the event I(v ∈ S). For the inequality, Dv(S) is upper bounded by the
minimum distance of v from its parent in the MST (S). Let T ∗S be the minimum Steiner tree over
S ∪ {t}, then it is well known that c(MST (S)) ≤ 2c(T ∗S). Overall,

E
R

[E
S

[c(PR(S))]] ≤ 2E
R

[E
S

[c(TR,S)]] ≤ 2(E
S

[c(Tα(S))] + E
S

[c(MST (S))]) ≤ 2(α+ 2)E
S

[c(T ∗S)].

By applying the 1.39-approximation algorithm of [17] we get the following.

Corollary 21. Ξrand has PoA at most 6.78.

Theorem 22. There exists a deterministic ordered protocol with PoA at most 16.

Proof. We use derandomization techniques similar to [52, 48] and for completeness we give the
full proof here. First we discuss how we can get a PoA of 6.78, if we drop the requirement of
determining the protocol in polynomial time. Similar to the proof of Theorem 20 we define the tree
TR,S for the random activated set S as follows: we construct TR,S from the Tα(S) of Algorithm
1, by connecting only all vertices of S \ V (Tα(R)) with their nearest neighbor in V (Tα(R)) (by
breaking ties in accordance to Algorithm 1). We apply the standard derandomization approach
of conditional expectation method on TR,S . More precisely, we construct a deterministic set Q1 to
replace the random R in Algorithm 1, by deciding for each vertex of V \ {t}, one by one, whether
it belongs to R or not. Assume that we have already processed the set Q ⊂ V and we have decided
that for its partition (Q1, Q2), Q1 ⊆ R and Q2 ∩ R = ∅ (starting from Q1 = {t} and Q2 = ∅).
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Let v be the next vertex to be processed. From the conditional expectations and the independent
activations we know that

E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅] = E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v ∈ R]pv

+ E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v /∈ R](1− pv),

meaning that

either E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v ∈ R] ≤ E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅],

or E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v /∈ R] ≤ E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅].

In the first case we add v in Q1 and in the second case we add v in Q2. Therefore, after processing
all vertices, ES [c(TQ1,S)] ≤ ES,R[c(TR,S)]. If we replace the sampled R of Algorithm 1 with the
deterministic set Q1, we can get the same bound on the PoA with the randomized protocol of
Theorem 20.

However, the value of ES,R[c(TR,S)|Q1 ⊆ R,Q2 ∩ R = ∅] seems difficult to be computed in
polynomial time; the reason is that it involves the computation of ER[c(Tα(R))|Q1 ⊆ R,Q2∩R = ∅]
which seems hard to be handled. To overcome this problem we use an estimator EST (Q1, Q2) of
ES,R[c(TR,S)|Q1 ⊆ R,Q2∩R = ∅], which is constant away from the optimum ES [c(T ∗S)], where T ∗S is
the minimum Steiner tree over S∪{t}. Following [52, 48], we use the optimum solution of the relaxed
Connected Facility Location Problem (CFLP) on G in order to construct a feasible solution ȳ of
the relaxed Steiner Tree Problem (STP) for a given set R. We show that the objective’s value of the
fractional STP for ȳ is constant away from ES [c(T ∗S)] and that its (conditional) expectation over R
can be efficiently computed. This quantity is used in order to construct the estimator EST (Q1, Q2).
We apply the method of conditional expectations on EST (Q1, Q2) and after processing all vertices,
by using the primal-dual algorithm [32], we compute a Steiner tree on Q1 with cost no more than
twice the cost of the fractional solution.

In the rooted CFLP, a rooted graph G = (V,E, t) is given and the designer should select some
facilities to open, including t, and connects them via some Steiner tree T . Every other vertex is
assigned to some facility. The cost of the solution is M (M > 1) times the cost of T , plus the
distance of every other vertex from its assigned facility. Our analysis requires to consider a slightly
different cost of the solution, which is the cost of T , plus the distance of every other vertex v from
its assigned facility multiplied by pv. In the following LP relaxation of the CFLP, ze and xij are
0-1 variables indicate, respectively, if e ∈ E(T ) and whether the vertex j is assigned to facility i.
δ(U) denotes the set of edges with one endpoint in U and the other in V \ U , d(i, j) denotes the
minimum distance between vertices i and j in G and ce is the cost of edge e.

LP1: CFLP

min B + C
subject to

∑
i∈V xij = 1 ∀j ∈ V∑

e∈δ(U) ze ≥
∑

i∈U xij ∀j ∈ V,∀U ⊆ V \ {t}
B =

∑
e∈E ceze

C =
∑

j∈V pj
∑

i∈V d(i, j)xij
ze, xij ≥ 0 ∀i, j ∈ V and ∀e ∈ E

Let (z∗ = (z∗e )e,x
∗ = (x∗ij)ij , B

∗, C∗) be the optimum solution of LP1.

Claim 23. B∗ + C∗ ≤ 3ES [c(T ∗S)].
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Proof. Given a set S ⊆ V , for every edge e ∈ T ∗S (T ∗S is the minimum Steiner tree over S ∪ {t})
let ze = 1 and for e /∈ T ∗S let ze = 0. For every j ∈ V let xij = 1 if i is j’s nearest neighbor in
(S ∪ {t}) \ {j}. Set the rest of xij equal to 0. Note that this is a feasible solution of LP1 with
objective value BS + CS ≤ c(T ∗S) +

∑
v∈V pvDv(S). By taking the expectation over S,

B∗ + C∗ ≤ E
S

[BS + CS ] ≤ E
S

[c(T ∗S)] +
∑
v∈V

E
S

[I(v ∈ S)]E
S

[Dv(S)] = E
S

[c(T ∗S)] + E
S

[∑
v∈S

Dv(S)

]
≤ E

S
[c(T ∗S)] + E

S
[c(MST (S))] ≤ 3E

S
[c(T ∗S)],

By using the solution (z∗ = (z∗e )e,x
∗ = (x∗ij)ij , B

∗, C∗), we construct a feasible solution for the
following LP relaxation of the STP over some set R ∪ {t}.

LP2: STP over R ∪ {t}
min

∑
e∈E ceye

subject to
∑

e∈δ(U) ye ≥ 1 ∀U ⊆ V \ {t} : R ∩ U 6= ∅
ye ≥ 0 ∀e ∈ E

We define aij(e) = 1 if e lies in the shortest path between i and j and it is 0 otherwise. For
every edge e we set ȳe = z∗e +

∑
j∈R

∑
i∈V aij(e)x

∗
ij .

Claim 24. ȳ = (ȳe)e is a feasible solution for LP2.

Proof. The proof is identical with the one in [52] but we give it here for completeness. Consider
any set U ⊆ V \ {t} such that R ∩ U 6= ∅ and let ` ∈ R ∩ U . It follows that

∑
e∈δ(U)

ȳe ≥
∑
e∈δ(U)

z∗e +
∑
e∈δ(U)

∑
j∈R

∑
i∈V

aij(e)x
∗
ij ≥

∑
i∈U

x∗i` +
∑
e∈δ(U)

∑
i∈V

ai`(e)x
∗
i`

≥
∑
i∈U

x∗i` +
∑
i/∈U

x∗i`
∑
e∈δ(U)

ai`(e) ≥
∑
i∈U

x∗i` +
∑
i/∈U

x∗i` = 1.

For the last inequality, note that ai`(e) should be 1 for at least one e ∈ δ(U) since i /∈ U and
` ∈ U .

Claim 25. Let c̄ST (R) be the cost of the objective of LP2 induced by the solution ȳ. Then
ER[c̄ST (R)] = B∗ + C∗.

Proof.

E
R

[c̄ST (R)] = E
R

∑
e∈E

ce(z
∗
e +

∑
j∈R

∑
i∈V

aij(e)x
∗
ij)

 = B∗ + E
R

∑
j∈R

∑
i∈V

∑
e∈E

ceaij(e)x
∗
ij


= B∗ + E

R

∑
j∈R

∑
i∈V

d(i, j)x∗ij

 = B∗ +
∑
j∈V

pj
∑
i∈V

d(i, j)x∗ij = B∗ + C∗.
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Observe that due to the expression of ȳ we can efficiently compute any conditional expectation
E[c̄ST (R)|Q1 ⊆ R,Q2 ∩R = ∅]; this is because

E
R

∑
j∈R

∑
i∈V

aij(e)x
∗
ij |Q1 ⊆ R,Q2 ∩R = ∅

 =
∑
j∈Q1

∑
i∈V

aij(e)x
∗
ij +

∑
j /∈Q1∪Q2

pj
∑
i∈V

aij(e)x
∗
ij .

We further define cC(R) =
∑

v∈V pvDv(R). We can also efficiently compute any conditional expec-
tation E[cC(R)|Q1 ⊆ R,Q2 ∩R = ∅] (Claim 2.1 of [52]). We are ready to define our estimator:

EST (Q1, Q2) = 2E
R

[c̄ST (R)|Q1 ⊆ R,Q2 ∩R = ∅] + E
R

[c̄C(R)|Q1 ⊆ R,Q2 ∩R = ∅].

Our goal is to define a deterministic set R∗ to replace the sampled R of Algorithm 1. We
process the vertices one by one and we decide if they belong to R∗ by using the model conditional
expectations on EST (Q1, Q2). More specifically, assume that we have already processed the sets
Q1 and Q2 (starting from Q1 = {t} and Q2 = ∅) such that Q1 ⊆ R∗ and Q2 ∩ R∗ = ∅. Let
v be the next vertex to be processed. From the conditional expectations and the independent
activations we know that EST (Q1, Q2) = pvEST (Q1 ∪ {v}, Q2) + (1 − pv)EST (Q1, Q2 ∪ {v}). If
EST (Q1 ∪ {v}, Q2) ≤ EST (Q1, Q2) we add v to Q1, otherwise we add v to Q2. After processing
all vertices and by using Claims 23 and 25,

EST (R∗, V \R∗) ≤ EST ({t}, ∅) ≤ 6E
S

[c(T ∗S)] +
∑
v∈V

pvER[Dv(R)]

= 6E
S

[c(T ∗S)] + ER

[∑
v∈V

I(v ∈ R)Dv(R)

]
≤ 6E

S
[c(T ∗S)] + ER[c(MST (R))] ≤ 8E

S
[c(T ∗S)].

Let TPD(R∗) be the Steiner tree over R∗ ∪ {t} computed by the primal-dual algorithm [32]. Then,

EST (R∗, V \R∗) = 2c̄ST (R∗) +
∑
v∈V

pvDv(R
∗) ≥ c(TPD(R∗)) + E

S

[∑
v∈S

Dv(R
∗)

]
.

By combining inequalities (1) and (2) (after replacing R by R∗ and Tα(R∗) by TPD(R∗)) with all
the above, we have that

E
S

[c(PR∗(S))] ≤ 2

(
c(TPD(R∗)) + E

S

[∑
v∈S

Dv(R
∗)

])
≤ 2EST (R∗, V \R∗) ≤ 16E

S
[c(T ∗S)].
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